媒体聚焦

当前位置: 首页 > 新闻中心 > 媒体聚焦

5G通信对电源的新要求及其解决方案

2021/05/25

        众所周知,包括韩国和美国在内的世界多个国家和地区已经率先开启了5G通信。中国也在20多个城市开始了5G通信试点并会在未来大力推广。5G通信的建设方兴未艾。

       相比于现有的3G、4G通信,5G通信具有超高速率、极低延时等特点。这些特点产生的原因是5G通信采用了更高频段的频谱,以中国为例:4G LTE的频段为1.8GHz-2.65GHz,而5G目前公布的频段为3.3GHz-5GHz。而未来还会建设高于6GHz的毫米波(mmW)5G通信。根据光速公式:
c=λν

       频率ν越高,意味着波长λ越小,对于无线通信,这意味着通信信号的覆盖面积越小。这一方面需要5G通信基站的密度更高,另一方面需要单一通信基站采用Massive MIMO (64T64R、128T128R等)、beamforming等技术解决信号覆盖面积小等问题。这些新技术和应用对于通信电源的自然散热能力,维护成本等提出了新的需求。

       同时,5G较为丰富的组网架构和布局方式带来了更多的供电方式及其组合,包括交流(UPS)直接供电、-48V供电、HVDC(高压直流)供电等。由于在很长一段时间内5G的建设还需要兼容(保留)现有3G和4G通信,因此多数采用现有基站和中心局进行改造和升级的方式,这意味着通信电源需要同时给3G/4G和5G通信设备供电,对通信电源的输出功率,功率密度,可靠性等提出了新的需求。


5G通信对电源的要求

       5G通信的建设给开关电源企业带来了巨大商机。根据安信证券研究中心的数据,5G通信电源的市场规模预计为315亿元人民币。而巨大商机也同时给通信电源设计者带来了新的挑战。

5G通信对电源的要求:更大的输出功率和更高效率

       由于5G通信需要采用Massive MIMO等技术,5G基站的AAU单扇区输出功率由4G的40W~80W上升到200W甚至更高,同时由于处理的数据量大幅度增加,BBU(基带处理单元)(或者在5G某些组网模式下被拆分为CU和DU)的功率也大幅增加,其功率已经超过1000W。对于目前较流行的5G基站组网方式:3扇区AAU+1个BBU,假设AAU效率为20%,那么单单为5G基站供电的通信电源的输出功率大约为:

P_out=(3*200)/0.2+1000=4000W

       而原有4G通信基站供电的通信电源输出功率为2000W~3000W。输出功率大幅提升。

       根据华为技术有限公司提供的数据,3G(兼容2G),4G(兼容3G),5G(兼容3G和4G)基站的功耗如下图所示。增加5G通信后基站电源的功率上升68%。


       5G通信对电能需求增大意味着对通信电源的效率要求更高,从而降低通信运营成本(OPEX),根据中国联通的统计数据,通信数据中心(中心局机房)的OPEX中电费占比达到28%。虽然供电系统的能耗只占通信数据中心总能耗的10%,但是供电系统会加剧制冷系统的负担,以30KW的系统为例,效率提高5%可以使得电源设备一年减少好点18000度,空调电耗减少7200度,提高通信电源转换效率是通信数据中心的降成本的关键手段之一。

       5G通信的数据流量相比3G/4G通信变得更加不均衡,某时段流量可能极大,某时段可能小,这意味着通信电源的实际负载范围会从轻载到满载。对于5G通信电源,为了确保在任何负载下通信系统的耗电都达到最低值,效率的要求不再是某一负载下达到最高值,而是要求在很宽的范围内效率都要达到最高值,效率曲线变为较为平稳的直线。


5G通信对电源的要求: 高功率密度

        如前所述,对于通信数据中心及宏基站,多数采用现有设备扩容的方式来建设5G通信设备。其中留给用于5G通信需要的电能的电源柜的空间往往极其有限,甚至只能采用原有电源柜。在这些情况下电源柜的输出功率需要大幅度增加。这就要求通信电源模块(通常称其为整流模块)在保持体积基本不变的情况下输出功率大幅度增加,即功率密度提升。例如大量用于4G通信中的3KW输出整流模块尺寸为280mm*80mm*40mm(长*宽*高),其功率密度为:

ρ=3000/((280/25.4)*(80/25.4)*(40/25.4))=55W/in^3

而为了应用于5G通信,在尺寸不变的情况下输出功率需要达到4KW,那么电源功率密度为:

ρ=4000/((280/25.4)*(80/25.4)*(40/25.4))=73W/in^3

       对于5G微基站,AAU的供电电源采用抱杆设计,例如中兴通讯推出的刀片式5G通信电源(如下图所示)。为了降低整体箱体重量和尺寸,要求内部的电源尺寸尽量小,高度尽量低(甚至低于20mm),相应地电源的功率密度需要大幅度提高。


5G通信对电源的要求:自然散热

       在5G通信中,微(小)基站数量将大大幅度增长,根据中信建投证券的分析报告,5G微基站的数量将为6575万至1.64亿。这些微基站的供电电源绝大多数都将被安装在密闭空间内,如图3所示,以满足IP65等防护等级,从而可以被安装在室外、野外等环境。由于被安装于密闭空间,因此这一类通信电源只能采用自然散热(无强制风冷或无水冷)方式。与此同时5G制式下通信电源的输出功率相比3G/4G通信制式更大,这对通信电源的散热设计带来更为巨大的挑战。

5G通信对电源的要求:高可靠性

       作为通信系统的心脏,通信电源的可靠性决定了整个系统的可靠性。5G通信将会应用在自动驾驶,智能制造,人工智能等重要场合,因此5G通信中对通信电源系统的可靠性提出了更高的要求。同时,如前面介绍5G通信将出现海量的微(小)基站,若出现批量失效,其维修成本将高的惊人。为了降低维护成本,提高电源的可靠性是对5G通信电源的主要要求之一。
       总结起来,这些新要求对于通信电源设计者来说挑战非常大,常常使他们加班加点,甚至夜不能寐。

5G通信电源解决方案

5G通信电源解决方案:大功率和高效率方案

        对于开关电源来说,能否输出更大功率,决定因素在于功率变换产生得热能否被散掉,能否保持器件的温度稳定在合适值。散热决于两个因素,一是产生的损耗大小,损耗小,那么容易被散掉,反之亦然;二是电源的散热能力,这取决于散热器,风扇(强制风冷)和热路设计。而前者是热产生的源头,更易于解决问题;而后者的决定因素很多,例如环境,结构尺寸等,不易于实施和解决问题。

        在隔离型开关电源中,依据拓扑的不同,功率半导体器件的损耗约占总损耗的30%~80%,因此降低功率半导体器件的损耗对于提高输出功率,同时也是提高效率具有重要意义。对于开关电源中常用的功率半导体器件MOSFET或者IGBT,损耗包括包括开关损耗(半导体开通和关断过程中产生的损耗)和导通损耗(半导体在稳态开通过程中由于导通电阻或者导通压降产生的损耗)。只有将开关损耗和导通损耗都减小才可以降低半导体的整体损耗。


5G通信电源找亿达,台达通信电源总代,4006866839.

Copyright@ 山东亿达信息技术有限公司 版权所有鲁ICP备19060870号-1      项目咨询热线 400-6866-839

Copyright@ 山东亿达信息技术有限公司 版权所有 鲁ICP备19060870号-1      项目咨询热线

400-6866-839